
[image: image1.wmf]University of Prishtina

Faculty of Electrical and Computer Engineering
Kodra e Diellit, p.n.

10000 - Prishtinë, Kosova

Software Requirements Specification

<version>

FIEK Pizza
Distribution list:
Name (alphab.)
Department
Location

<name>
<department>
<location>

<name>
<department>
<location>

Document Management

History of changes

	Version
	Status
	Date
	Person resp.
	Reason for Change

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Persons authorized to make changes

<name>
<department>
<location>

<name>
<department>
<location>

Document was created using the following tools:

WINWORD 9.0

<Graphics tool>

Contents

5

1 Introduction

1.1 Purpose of the document
5

1.2 Validity of the document
5

1.3 Definitions of terms and abbreviations
5

1.4 Relationship with other documents
5

1.5 Overview of the document
6

2 General description of the product
7

2.1 Relationship with existing projects
7

2.2 Relationship with earlier and follow-up projects
7

2.3 Purpose of the product
7

2.4 Delimitation and embedding of the product
7

2.5 Overview of the required functionality
7

2.6 General restrictions
7

2.7 Hardware and software specifications
8

2.8 Product users
8

3 Detailed description of the required product features
9

3.1 Scope of delivery
9

3.2 Sequences (scenarios) of interactions with the environment
9

3.3 User goals
10

3.4 Required functions of the product
10

3.4.1 <function designation a>
11

3.4.1.1 Effect of <function designation a>
11

3.4.1.2 Dependencies/constraints
11

3.4.2 <function designation b>
11

3.5 External interfaces of the product
11

3.5.1 User interfaces
11

3.5.2 System interfaces
12

3.5.2.1 <interface a>
12

3.5.2.2 <interface b>
12

3.6 Other product features required
12

3.6.1 Performance
12

3.6.2 Resource
13

3.6.3 Security
13

3.6.4 Safety
13

3.6.5 Portability
13

3.6.6 Reliability
13

3.6.7 Maintenance
13

3.6.8 Reuse
13

3.6.9 Usability
14

4 Specifications for project management
15

4.1 Implementation requirements
15

4.2 Ready-to-use and bought-in components
15

4.3 Subcontractors
15

4.4 Acceptance conditions
16

4.5 Terms of delivery
16

4.6 Requirements for use
16

4.7 Warranty
16

5 Obligations of the client
17

6 Literature
18

7 Annex
19

General remark: This commented table of contents of a software requirements specification relates to projects which deal primarily with SW development.

1 Introduction

1.1 Purpose of the document

The purpose of the software requirements specification is to produce a specification for <xyz> which is binding for the development and is as unambiguous as possible. To this end, it contains the sum of all the requirements which have been made (and accepted) on this product and project management from the perspective of the project.

1.2 Validity of the document

Which area does this software requirements specification apply to?

· Does the software requirements specification apply to a specific complete project?

· Does the software requirements specification apply to only part of a project?

· Is the software requirements specification based on an existing software requirements specification?

· Is the software requirements specification based on an existing product (new version, delta software requirements specification, etc.)?

This is also a good point to say a little about updating of the document (who is responsible for changes, e.g. for version development or maintenance project?).

1.3 Definitions of terms and abbreviations

List of terms and abbreviations which are important for understanding the software requirements specification (IT expressions and terms from the application domain).

This list will normally be in alphabetical order, but it can also be organized on a hierarchical basis if necessary, such that more specific terms (e.g. transaction with a cash dispenser) can be identified among more general terms (e.g. transaction).

The term definitions are particularly important since the software requirements specification represents the common basis for ensuring that the client and contractor are talking “the same language”.

If these terms occur in normal text, they should be highlighted to identify them as technical expressions.

Example:

IT
information technology

MTBF
mean time between failure

MTTR
mean time to repair

1.4 Relationship with other documents

If no tender exists in which all the requirements are described on a legally binding basis, the software requirements specification will represent the binding basis, agreed between the client and contractor, for the development work and product acceptance. It is therefore equally relevant for client and contractor.

If a legally binding tender exists, however, the software requirements specification will generally only be relevant for development on an internal level (unless agreed otherwise in the contract).

In all matters which relate to product features, project management and the client’s obligations, it is important to ensure agreement with the tender. No statements in this regard in the software requirements specification may contradict any statement in the tender.

If a user requirements specification exists, the software requirements specification must refer to the latter as far as possible in order to ensure that the requirements described from the perspective of the client or user in this user requirements specification can be traced to the requirements made on the product in question and the project management. Unlike the user requirements specification, the software requirements specification must specify precisely what a product must be able to do. These details in the software requirements specification define how the product which is to be created satisfies the requirements set out in the user requirements specification.

1.5 Overview of the document

· What is the content of the rest of the software requirements specification?

· How is the software requirements specification structured?

General description of the product

This general description of the product being created must take the form of a “Management Summary”, i.e. it should not describe specific product features.

1.6 Relationship with existing projects

If the project is related to existing projects, these should be outlined in brief in this section (e.g. umbrella projects, sister projects). Any interfaces which are required must then be described in section 2.5 or in the full description of the system interfaces.

1.7 Relationship with earlier and follow-up projects

If the project is related to earlier or follow-up projects, these must be outlined in brief in this section. If the product is to replace an earlier product, section 2.5 must describe the reasons for the new development.

1.8 Purpose of the product

What is the purpose of this product? What are its important features? What key advantages does it have over the current situation?

If the product is to replace an earlier product, the reasons for the new development must be described in this section.

1.9 Delimitation and embedding of the product

This section must describe how the product to be created is delimited and embedded in its environment.

What key functions is the product to support? Which will it not support, i.e. what belongs not to the product but to the environment?

This description of where the system begins and ends must be consistent with any superordinate documents which exist.

In the event that a user requirements specification exists, but significant restrictions in terms of functionality are to be made compared with this user requirements specification, these must be described at this point.

How is this product related to other systems in its environment (e.g.: Is this an independent system or a subsystem of a larger system; does it replace an existing system?).

If the product being created is a subsystem, the basic principles of the superordinate system and its relationships to other subsystems must be summarized at this point (e.g. in the form of a block diagram which shows the components, their interaction and the external interfaces).

1.10 Overview of the required functionality

This section must provide an overview of what the product which is to be created has to deliver to its environment (e.g. human users or other systems).

This description is merely meant to provide an overview of the more detailed product description in section 3.

1.11 General restrictions

This section must describe the key specifications which restrict the development and the product (e.g. specifications as regards interfaces, standards, methods).

1.12 Hardware and software specifications

· Which HW environment is the target system to run in?

· Which SW environment is the target system to run in?

· Which HW environment is the system to be developed in?

· Which SW environment is the system to be developed in (operating systems, development tools)?

1.13 Product users

This section is intended to set out which users are to use the product to be created (e.g. prior training and knowledge in the use of software and computers).

Different user classes may exist (e.g. production users and system administrators, daily users and occasional users).

Detailed description of the required product features

This section of the software requirements specification must define the product features requested (prescribed) by the client and agreed to by the development department. These features contain all functions, interfaces and other product features. A number of points should be taken into account in describing the features:

Every required feature should:

· be uniquely identified

· be prioritized where necessary (e.g. with regard to releases)

· contain the origin of the requirement if there is any uncertainty as to who requires something

· if a user requirements specification exists, contain references to the relevant requirements in this user requirements specification (preferably with reference to a unique designation) (source); if references cannot be made to all requirements in the user requirements specification (if the functionality is restricted), reference should also be made to such requirements in the user requirements specification, complete with appropriate notes.

Each required feature should be described so that:

· there is as little room for interpretation as possible (clarity)

· it must be possible to check the finished product (has the product been made correctly?)

1.14 Scope of delivery

The scope of delivery must contain a list of all deliverables (product and its subcomponents, project documentation to be supplied, user manuals, training documents, training, support in the introductory phase e.g. in the form of coaching, installation procedures, migration of data stocks, user support in the form of hotline or e-mail, etc.).

Those components which do not form part of the “product in the narrower sense” (program), e.g. user documentation, training, etc., must be described accurately in this subsection; the “product in the narrower sense” is described in detail in the following subsections.

1.15 Sequences (scenarios) of interactions with the environment

This section should describe typical sequences of how one (or more) user(s) or another system in the environment of the product to be created interact(s) with the latter. Sequences of this kind are often termed scenarios.

If such scenarios are already described in detail in an existing user requirements specification, they can be adopted from that user requirements specification and augmented where necessary.

While it is generally not possible to describe all possible scenarios completely, a certain degree of completeness must be ensured as regards important relationships with the following functions of the product being created:

1) It must be possible to use appropriate functions to implement all actions which the product must perform. Reference to these must be as accurate and explicit as possible (e.g. “by function <a> in 3.4.x”). This is intended to ensure that no functions are forgotten.

2) Each of the functions to be described below should occur in at least one sequence. This will ensure that no functions are requested for which no-one knows why they are needed.

Likewise, it is recommended that references be made to the relevant interfaces described below in the case of all actions which are to be executed by users or other systems in the environment.

Similarly, a certain degree of completeness must be achieved in terms of important relationships with the user’s goals to be described below:

1) All scenarios should pursue one or more goals. If a goal is not immediately apparent (in the case of simple or short scenarios, for example), a reference must be made which is as accurate and explicit as possible. This will facilitate understanding of the scenarios.

2) It must be possible to achieve each of the user’s goals described below through at least one sequence. This fact will demonstrate that these goals can also be attained using the product which is to be created.

1.16 User goals

This section should describe all user goals attained through the interactions with the product as described in the above scenarios (e.g. the user’s goal of having (more) cash will, in the normal run of events, be satisfied through his interactions with the cash dispenser). This makes the scenarios easier to understand.

Generally speaking, several scenarios may be suitable for attaining a goal, or several goals may be satisfied through such a sequence. In any event, references to the relevant scenarios should be made as accurate and explicit as possible.

In some cases, it can be useful to take a more general approach to investigating those of the client’s goals which go beyond the direct goals of the user. Since such goals do not have so much to do with the scenarios, however, they should be described separately in a subsection of their own or in an annex. If this could cause problems to occur with the client, such goals should not be described at all in the software requirements specification.

1.17 Required functions of the product

This section must describe in detail what the product to be created must do (the description must be made from the perspective of the system’s reactions; the requirements from the sequences must be depicted).

This description must agree with the overview of the functionality required (in section 2).

A hierarchical functional structure (function tree) is generally suitable for the description. There are essentially two options for the hierarchical structure:

1) If specific functions are described on all levels, the subfunctions must be assigned to the superordinate composite functions.

(For example, the specific function “Identifying a bank customer” includes (among other things) the specific functions “Request to enter a code” and “Check of an entered code”.)

2) If specific functions are only described on the lowest level, classes of such functions must be defined and the specific functions must be assigned to the relevant classes.

(For example, the class “Functions for identifying a bank customer” by a cash dispenser consists of the specific functions “Request to enter a code” and “Check of an entered code”.)

If a composite function (e.g. “Identifying a bank customer” in this example) requires interaction with the user when implemented (here: entering the code), it may be best to perform hierarchical structuring in accordance with the second option using classes of functions. In this case, every such class (“Functions for identifying a bank customer” in our example) should make up a separate subsection of the document which describes the associated specific functions. In principle, it is also possible and often desirable to define more specific subclasses for such classes of functions in order to achieve a more detailed hierarchical structure.

Each description of a specific function must contain a unique designation, a description (effect from external perspective) and, if they exist, dependencies and constraints.

1.17.1 <function designation a>

Each function must have a unique designation. This designation should be used in the project’s life cycle (i.e. Design, Implementation, etc.).

1.17.1.1 Effect of <function designation a>

This section must describe how the function works, i.e. the effect which this function of the newly-created product has on its environment. This should be done in sufficient detail so that only one interpretation of the function’s effect is possible.

1.17.1.2 Dependencies/constraints

This section must set out any existing dependencies/relationships with other functions. This is designed to ensure that, where changes are made to a function described in this section, these dependent functions can also be examined selectively. In addition, this is intended to prevent any possible redundancies and, in particular, contradictions.

Where significant constraints apply to any function described in this section (e.g. affecting the speed of the product when applied), these must be described below under the other product features and a reference made to these in this section (e.g. by referencing the relevant speed feature).

1.17.2 <function designation b>

....

1.18 External interfaces of the product

This section must describe all user interfaces and all interfaces of the product being created to systems in the product’s environment.

The external behavior, i.e. the interactions between the product to be created and its environment, should already have been described above in the form of scenarios. This section primarily describes the appearance and functions of the specific interfaces.

1.18.1 User interfaces

This section must describe how the product communicates with the users. In applications using graphical user interfaces, the subdivision should be oriented to the visible elements.

When describing the user interfaces, it is advisable to subdivide the description into a general part, complete with details of the general setup of the user interface (e.g. “Subdivision into menu/screen/status bar,” “How are Help Pages constructed?”, “Use of OK/Cancel buttons” etc.), and into specific descriptions dealing with the individual parts of the user interface (e.g. entry masks, menus, etc.).

This section should not describe how the user interface is implemented internally. Any specifications on the part of the client regarding the libraries which are to be used or “GUI Builder” should be described below in section 4.

This section can also contain references to prototypes or feasibility studies (increasingly, user interfaces are not being defined “on paper”).

Examples of aspects which need to be described:

· Input data

· Dialog, user prompting

· Commands, control parameters

· Menus

· Entry masks

· Graphics

· Output data

· Logs, lists

· Operating messages

· Error responses

· Help texts

· Control elements (arrangement, function)

· Displays and signaling (arrangement, function)

1.18.2 System interfaces

This section must describe all interfaces to software and hardware systems which the product created will communicate with. It is important that every system interface of this type contains an appropriate designation, and a description of the communication type, data format and other details.

A rough overview has already been provided in section 2. If the system interfaces are so complex that this overview is insufficient to ensure a good understanding, a more detailed overview must be provided in this section. It is important to ensure in all cases that the relationships of the individual interfaces described below are unambiguous.

1.18.2.1 <interface a>

· Syntax/semantics of the interface data

· Data format

· Program interface

· Transfer protocols

· Data rates

1.18.2.2 <interface b>

....

1.19 Other product features required

This section deals with additional product features (often known as quality features) which identify the product in greater detail and extend beyond functions and interfaces (all additional requirements which need to be satisfied). To decide what really needs to be recorded in this section, the various reasons for a description should be considered:

· Explicit requirements by the client which the contractor agrees to meet.

· Additional important product features, even if they have not been requested explicitly (this plays an important part in safeguarding both parties since it prevents misinterpretations and incorrect hopes): Few things are really as “straightforward” as we would ourselves believe.

Where no requirements relate to a specific subsection, this should also be documented (e.g. “No special safety features required”).

1.19.1 Performance

This section describes the features which determine the speed of the product (required values). Standard formulations such as “rapid response times are required” are to be avoided. Exact values should best be used.

A number of examples of speed features include:

· Real-time, time-sharing, batch

· Response times

· Startup times

· Throughput rate

· Holding time

1.19.2 Resource

This section describes features which specify the resources required by the product being created.

Inaccurate formulations (see above) must be avoided (latitude for interpretation!)

Examples of resource features include:

· Data quantities

· CPU requirement

· CPU utilization

· Main memory

· Peripheral memory

· Peripheral units

· Output quantities (e.g. paper)

· Personnel required (does the system run unmanned or does someone need to respond to possible messages?)

1.19.3 Security

This section must describe those features which are used to protect the product from outside manipulations (against unauthorized access, violations of integrity through simultaneous file access, restrictions to read accesses, virus protection, etc.)

1.19.4 Safety

This section must set out all features which enhance safety. This covers features which limit damage after a software error or system failure. These include, for example, all forms of data backup or error treatment behavior. Considerations of safety features can be useful in identifying critical software elements.

1.19.5 Portability

This section must be used to list all features which support adaptation or portability of the product e.g. GUI tools, ANSI-C or similar. Explicit reference should also be made - where necessary - to all points which are of relevance for porting or adaptation.

1.19.6 Reliability

This section must define all features which provide information on the reliability and availability of the product. These can include failure times in minutes/year or mean time between software errors (MTBF = mean time between failure).

1.19.7 Maintenance

This section must contain information on product maintainability. This can include component structuring, the use of CASE tools, design tools or design methods, and information on the mean time for software corrections (MTTR = mean time to repair).

1.19.8 Reuse

This section deals with the requirements made on the product or product parts which enable subsequent reuse (e.g. increased standardization, modularization, documentation, etc.). Project-internal reuse, on the other hand, e.g. standards (templates, structures, etc.) and methods, etc. must be described in the RR plan if it has not been expressly required by the client.

1.19.9 Usability

This section must specify any usability features requested by the customer or implicitly requested on the basis of the user classes (see section 2). These specifications can include e.g. the maximum number of “usability problems” that may occur in a “usability test” in the framework of the acceptance tests using actual users. (It is also necessary to state that these actual users, for example, stem from a user class with little experience of using graphical user interfaces).

Specifications for project management

This section must describe all specifications relating to project management which are relevant for the client. All further specifications and conditions must be set out in the project plan, CM plan, QA plan or RR plan.

All statements which are made must agree with any tender which has been submitted, i.e. statements in this software requirements specification must not contradict any statements in the tender.

1.20 Implementation requirements

This section must set out all the requirements and conditions for product implementation within the framework of project management. These include HW/SW, tools, methods, etc.

Examples with explanations include:

· Hardware

· Development computer

· Operating resources for development work (printers, measuring instruments, network, etc.)

· Test installations

· Software

· Operating systems for the development computers

· Standard software for development work

· Languages, shells, compilers

· Class libraries

· SW tools

· Other

· Development method

· Design methods

· Provision of QA certificates

· Confidentiality class for development activities and documents

1.21 Ready-to-use and bought-in components

This section must describe all ready-to-use and bought-in components which are needed for the product or project management.

· Standard software

· Reused own software or software from the client (see section 5)

· Operating systems

· Third-party development

1.22 Subcontractors

Depending on the contractual framework, subcontractors may need to be made known to the client. All subcontractors and their contributions to the product or project must be documented. Important delivery dates can also be included in the software requirements specification.

1.23 Acceptance conditions

This section must set out all the conditions which are relevant for the acceptance.

Examples include:

· Framework conditions

· What will be used as reference for the acceptance? (Generally the software requirements specification)

· How will the acceptance be performed? (E.g. during the course of a joint acceptance test at the customer’s, or SW will be dispatched and acceptance will be performed with the involvement of the customer (complete with error messages and deadline))

· Who will provide the test data? When must the test data be provided?

· Where will the acceptance take place? (E.g. at the customer’s, at the customer installation, in the development environment)

· Who signs the acceptance report? (Customer, development)

· Acceptance criteria

· Definition of the acceptance test
At what point in time will the acceptance be considered acceptable? (E.g. residual error rate)

· Are the other features set out in the software requirements specification complied with?

· Acceptance documents (e.g. test records)

· Are additional documents required for acceptance? (E.g. certification of reviews with review reports or tests with test records)

· Specialist reports, safety certification

· Must specialist reports or safety certification be provided?

· Satisfaction of provisions and standards

· Does the product comply with prescribed standards and specifications?

1.24 Terms of delivery

This section must set out all terms of delivery. The terms of delivery must be agreed with the client. An accurate examination of the terms of delivery can also be very useful for the “Obligations of the client” section (section 5). Set out below are examples of terms of delivery.

In essence, the following questions need to be answered:

· When will the various deliverables be delivered? (E.g. delivery plan with dates. It is important to check that all the deliverables described in the scope of delivery are covered).

· How will the individual deliverables be delivered (delivery form)? (In electronic form, paper, tape, floppy disk, in source form or executable code only, etc.)

· What are the requirements for delivery? (E.g. documents to be provided with the delivery; these can include certification, permits, patents/licenses, QA certificates, etc.).

1.25 Requirements for use

This section must document all the requirements that need to be satisfied during use. In particular, they can cover requirements relating to the course of action in this phase.

Examples can include, for example, special requirements relating to trial operation or the provision of personnel during commissioning.

1.26 Warranty

The Warranty subsection must document all agreements which are relevant for the product warranty. These can include e.g. term of warranty, scope of warranty, error reporting procedure, etc.

Obligations of the client

This section must list in full all the obligations which the client has within the scope of the project.

Section 4 may already have covered such obligations implicitly (e.g. in conjunction with the hardware prescribed by the client for project management).

Nevertheless, this section must set out in concise form all the obligations on the part of the client (e.g. that the prescribed hardware must be provided by the client in accordance with the agreement concluded).

When setting out the various requirements, the latter must agree with any tender which exists, i.e. statements in this software requirements specification must under no circumstances contradict the requirements in the tender.

It is essential with many points that deadlines be specified (otherwise delays may result, for example, as a result of the client not supplying the necessary products in time).

Examples include

· Provision of hardware (e.g. development computers)

· Provision of software (e.g. tools, licenses, standard SW, client’s SW)

· Provision of documentation (e.g. of existing systems, signed user requirements specification, SW documentation)

· Obligations relating to training (e.g. training of developers by the client; client personnel requiring training)

· Responsibilities and contact persons at the client’s (responsible persons, contact persons and project managers of the customer; any “client-supplied” developers, testing personnel, project assistants, pilot users)

· Preconditions and organization of tests (test data, test environment to be provided, etc.)

· Infrastructure (e.g. provision of rooms, computer center, cables, operating times, etc.)

· Installation requirements (e.g. preinstalled HW, access to client’s installations, availability of specialist personnel with workplan)

· Client’s response times to queries

· Procedure to be adopted if changes are needed to requirements

· Validation of user interfaces and program parts during the development work (prototyping)

· Etc.

Literature

This section must set out all the documents quoted in the software requirements specification.

Annex

If necessary, this section can list materials which are not covered elsewhere in the overall structure of the software requirements specification defined here, but which form part of the software requirements specification.

Examples include models. These can be both in text form or in more or less formal notations (e.g. in Z, VDM, SDL, Entity-Relationship diagrams and/or finite state machines). Such models may “merely” be used to better understand the application domains and their relationships with the product which is to be created. However, it is also possible in principle and, in many cases, is also advantageous relative to the effort involved, to use models to represent the requirements themselves (working on the basis that the product which is to be created should be the same as the model).

Page 12 / 19

	Copyright © University of Prishtina - 2012
	For internal use only

	Author:
	Inspector:

	Dept.:

Name:

Tel.:
	<department>

<name>

<tel.no.>
	Signature:
	Dept.:

Name:

Tel.:
	<department>

<name>

<tel.no.>
	Signature:

	File:
	D:\Universiteti i Prishtines\Ligjeratat\Software Engineering\Project Templates\2. Definition Phase\FIEK Software Requirment Specification.doc
	Status:
	<doc status>

	Date:
	<date>
	File:
	Project file
File directory
	Sect. <nn.nn>
<directory>

